Week   Content HW Due Reading
week 1           
Friday
9/1 
Intro     Chapter 1, 2, 3 
week 2  Tuesday
9/5 
Preprocessing    
Friday
9/8
KNN HW1   Chapter 9.5
week 3  Tuesday
9/12
Decision Tree     Chapter 8.1,  8.2 
Friday
9/15
Random Forest    
week 4 Tuesday
9/19
Linear Regression     Learning From Data:
2.32, 3.2, 3.32, 4.22, 4.3
Friday
9/22
Regularization HW2  HW1
week 5  Tuesday
9/26
Bias_Variance Trade-off
Cross-Validation (CV)
     Bias-Variance Trade-off 
Chapter 9.5
Friday
9/29
Perceptron/SVM     Chapter 9.3
Bishop Chapter 7.1
Perceptron Convergence
Introduction to Weka 
week 6  Tuesday
10/3 
SVM    
Friday
10/6
Kernel 
Project Intro
HW3
group formation 
HW2
week 7  Tuesday
10/10 
Probability Review
Naïve Bayes
    Chapter 8.3
Friday
10/13
Naïve Bayes    
week 8  Tuesday
10/17
Review      
Friday
10/20
Midterm   HW3
group formation
 
week 9  Tuesday
10/24
Review midterm
Project Intro
     
Friday
10/27
Feature Selection HW4     
week 10  Tuesday
10/31
Missing Data
Imbalance Data
    Imbalanced Data
Friday
11/3 
Ensemble      
week 11  Tuesday
11/7
Hierarchical Clustering     Chapter 10
Bishop 9.1
Clustering Methods  
Friday
11/10
K-means HW5   HW4
week 12  Tuesday
11/14
K-mediods
Clustering Evaluation
   
Friday
11/17
Apriori     Chapter 6
Tan, Steinbach and Kumar 
week 13  Tuesday
11/21
Apriori      
Friday
11/24 No Class
       
week 14  Tuesday
11/28
GSP HW6 HW5 GSP
Friday
12/1 
Autoregression      
week 15  Tuesday
12/5
DTW      
Friday
12/8
Review   HW6
project
 
week 16  Tuesday
12/12 No Class
Reading Period      
Friday
12/15
Final