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Abstract—In many machine learning applications, data are
collected from multiple sources and thus may suffer from id-
iosyncratic biases. A typical approach to modeling such a dataset
is via multi-task learning in which a group of tasks are trained
simultaneously by exploiting their similarities. However, because
different types of bias are often reflected in disjoint subsets of
features and may not conform to the same parametric form,
traditional multi-task learning algorithms are not sufficient to
capture the individualized impact of these subsets. In this paper,
we develop a Dirichlet Mixture of Gaussian Processes with Split-
kernel (S-DPM) to address this challenge. We establish a mixture
model in which each component consists of instances with similar
bias characteristics. The prediction task for each component is
modeled by a Gaussian process whose kernel is derived from two
sub-kernels operating on separate feature spaces. The number
of mixing components is inferred automatically by invoking
Dirichlet process based clustering on the data. We apply our
model to a clinical dataset to predict disease course in Multiple
Sclerosis patients and demonstrate its efficacy by comparing it
to standard Dirichlet mixture model (DPM) and the non-mixture
single Gaussian process model.

Index Terms—Gaussian process, Dirichlet process, nonpara-
metric Bayesian methods, multiple sclerosis, disease course pre-
diction

I. INTRODUCTION

Multi-task learning (MTL) methods learn a classification
or regression model for a set of related tasks jointly using
a shared representation [1]. They are particularly effective
when these tasks share some commonality and are potentially
under-sampled if treated individually. MTL methods seek to
uncover the distribution for each individual task as a function
of the entire feature space. However, for some applications,
the underlying distributions may be induced from independent
subsets of features which breaks a fundamental assumption
of MTL methods. For example, in the medical field, some
features in clinical datasets may involve physicians’ subjective
interpretation of test results whereas others, such as the
demographic features, reflect patient preferences in choice
of physician (e.g., patients may have a tendency to choose
doctors of the same age or gender [2]). The contributions to
the underlying distribution from each subset of features in the

above example can be independent and thus may not yield to
the same parametric form of modeling.

In this paper, we develop an MTL model to capture the
idiosyncratic contributions from partitioned feature subspaces.
Our motivating domain, predicting disease progression in
multiple sclerosis (MS) patients, suffers from both physician
subjectivity and patient bias and thus current MTL methods,
which focus on exploring the similarities among correlated
tasks, are not sufficient to distinguish the individualized im-
pact of different features. We introduce a new approach that
consists of a non-parametric mixture of Gaussian processes
(GPs) [3] in which the mixing components consist of data
with similar bias characteristics. Specifically, each mixing
component is fit with a set of “split” kernels, each of which
acts on a disjoint feature subspace to model each type of bias
separately (in our motivating domain there are two types of
bias). Because we have no a priori knowledge to estimate the
number of clusters in our mixture model, we apply Dirichlet
process (DP) based clustering to infer the number of mixing
components in the data.

A typical mixture model such as Gaussian Mixture Model
(GMM) [4] partitions the input space into different regions
and models each local region separately. Prediction for a new
instance is obtained by first deciding which region the new
input belongs to, and then applying the parameters of that
particular region to obtain the prediction. In our problem,
however, a new instance may manifest one or multiple types
of bias. Hence each of our mixing components operates on the
entire input space. Prediction for a new patient is a weighted
average of predictions from all components.

Before illustrating our approach, we first present a brief
survey of related work in Section II and review Gaussian
and Dirichlet processes in Sections III and IV, respectively.
We then present our new Dirichlet Mixture of Split-kernel
Gaussian Processes Model (S-DPM) in Section V. In Section
VI, we describe the MS prediction task in our motivating
domain and evaluate our model on the task by comparing
our model to a standard DP mixture model (DPM) often
used in MTL and a non-mixture single Gaussian process



model. The comparisons demonstrate that S-DPM consistently
outperforms the other two approaches. Finally, we conclude in
Section VII.

II. RELATED WORK

Nonparametric Bayesian models have been extensively stud-
ied to facilitate learning with complex data. In earlier work,
Rasmussen & Ghahramani introduced a Mixture of Experts
(ME) model, where the individual experts are Gaussian Pro-
cess (GP) regression models [5]. Using an input-dependent
adaptation of the Dirichlet Process, the authors implemented
a gating network for an infinite number of Experts. Tresp
presented the mixture of Gaussian processes (MGP) model
derived from the ME model and can also be used to model
general conditional probability densities [6]. In more recent
work, Lázaro-Gredilla et al. introduced a mixture of GPs to
address the data association problem, i.e., to label a group of
observations according to the sources that generated them [7].
Their novel mixture has the distinct characteristic of not using
a gating function to determine the association of samples and
mixture components. Ross and Dy explore an infinite mixture
model on the entire input space with must-link and cannot-
link constraints imposed among the data points [8]. Finally,
Chatzis and Demiris use the Pitman-Yor process (a variation
of DP process) to model the heavy tail behavior of the dataset
[9].

Since exact posterior inference is intractable for Bayesian
nonparametric models, another active vein of research in this
domain is to improve the accuracy of the posterior inference.
Sun and Xu proposed a new variational approximation for esti-
mating hidden variables and hyperparameters, and successfully
applied their model to the traffic prediction problem. [10].
In a recent study, Trapp et al. presented a deep structured
mixture of GP experts that allows exact posterior inference
with attractive computational and memory costs [11]. The
framework further captures predictive uncertainties consis-
tently better than previous expert-based approximations.

Lastly, nonparametric Bayesian approaches have been ap-
plied to various real-world applications. Jackson et al. devel-
oped a DPMGP model to classify a set of N signals into
an unknown number k of classes for biological sequences
(mRNA expression data) [12]. Abbasnejad et al. modeled user
preferences as an infinite DP mixture of communities exploit-
ing the observation that user populations often decompose
into communities of shared preferences. [13]. In the medical
domain, Rodriguez et al. applied a nested Dirichlet process
prior to modeling the multi-distribution data collected from
different centers in an application to quality of care in US
hospitals [14]. Kottas et al. proposed Bayesian nonparametric
spatial modeling approaches to study lung cancer incidences
from 88 counties in the state of Ohio over an observation
period of 21 years [15].

Our S-DPM model is motivated to address the physician
subjectivity and patient bias in clinical data of Multiple
Sclerosis patients. Our approach differs from the above studies
in that prior work explored customizing infinite mixtures in

the instance space while we aim to capture the individualized
impact of feature subsets. It is also worth noting that our
method differs from automatic relevant determination (ARD)
[16]. ARD focuses on statistical pruning of irrelevant features
and produces a sparse explanatory subset. S-DPM, on the other
hand, exploits the fact that our feature space can be partitioned
into two opposite groups in terms of their susceptibility to bias.

III. GAUSSIAN PROCESSES

Given n observations {(x1, y1), (x2, y2), . . . (xn, yn)}, a
regression problem tries to uncover the function y = f(x)
such that for a new input value x∗, we can accurately predict
the corresponding value y∗. Often, a particular parametric
form (such as linear) of f is stipulated and the parameters
are inferred from the data (e.g., via the linear regression).
In many practical situations, however, there is no natural
way of identifying the form of the function f . A Gaussian
process (GP) [3] avoids this difficulty by modeling the y values
directly.

Formally, a Gaussian process is a distribution over a set
of functions f : X → R, with the property that when
those functions are sampled and then evaluated on a finite
set of inputs {x1, x2, . . . , xn} ∈ X , the obtained values
{y1, y2, . . . , yn} ∈ Rn are normally distributed. Alternatively,
one can consider GP as a collection of random variables
indexed by the input set X , any finite subset of which has
a joint multivariate Gaussian distribution. When there is no
information suggesting otherwise, the mean function of GP
is often assumed to be 0. Under this assumption, a GP is
completely determined by its covariance matrix K (often
referred to as GP’s “kernel”). We denote:

f(x) ∼ GP (0,K)

Proper choice of the covariance function K determines a
GP’s flexibility and applicability to particular situations. One
popular choice is the Radial Basis Function (RBF) kernel
defined as:

k(x, x′) = σ2
fexp[

−(x−x′)2

2l2 ]

where σf and l control the correlation strength and its rate of
decay between two variables respectively.

Because observations are often noisy, it is common to
consider Gaussian processes with added independent noise:

y ∼ GP (0,K + σ2I)

The joint normality of any finite set of variables in GP
allows derivation of the following formula for the distribution
of a sample y = {y1, ..., yn} augmented by a new value
y∗ ∈ RD:[

y
y∗

]
∼ N

(
0,

[
K + σ2I KT

∗
K∗ K∗∗ + σ2I

])
where



K =


k(x1, x1) k(x1, x2) . . . k(x1, xn)
k(x2, x1) k(x2, x2) . . . k(x2, xn)

...
...

. . .
...

k(xn, x1) k(xn, x2) . . . k(xn, xn)


K∗ = [k(x∗, x1), k(x∗, x2), . . . , k(x∗, xn)]

K∗∗ = k(x∗, x∗)

Standard properties of the multivariate normal distribution give
the formula for the conditional expectation of y∗ given the
sample Y = {y1, ..., yn}:

y∗|Y ∼ N(µ∗, σ
2
∗)

where
µ∗ = K∗(K + σ2I)−1Y

σ2
∗ = K∗∗ −K∗(K + σ2I)−1KT

∗

Hence the best estimate of y∗ and the uncertainty around
it are captured by µ∗ and σ2

∗. The hyper-parameters of the
covariance function ({σf , l} in the RBF case), and the noise
variance σ can be estimated by maximizing the following
likelihood function:

log p(Y |X, θ, σ2) = −N
2 log 2π − 1

2 log |K + σ2I|

− 1
2Y

T (K + σ2I)−1Y .

IV. DIRICHLET PROCESS MIXTURE MODEL

Dirichlet process (DP) is a family of of Bayesian non-
parametric models in which the model representations grow
as more data are observed [17] [18] [19]. In particular, DP
used as a prior in a generative mixture model allows the
number of mixing components adapt to the individual dataset
automatically. DP can be interpreted as an extension to the
traditional generative model with an arbitrary (infinite) number
of mixing components. Formally, a Dirichlet process is an
infinite dimensional discrete distribution with two parameters
α and H denoted as:

G ∼ DP (α,H)

where H is the base distribution and scalar α is the strength
parameter. H serves as the mean of G and α controls the
convergence of G towards H . A Dirichlet process can be
constructed using the stick-breaking process [20] as follows:

θ∗k ∼ H vk ∼ Beta(1, α)

π∗
k = vk

k−1∏
j=1

(1− vj) G =
∞∑
k=1

π∗
kδ(θ

∗
k)

where k = 1, 2, . . . . and δ is the Dirac function.
A DP mixture model uses G(α,H) as the prior under

the Bayesian framework. The entire dataset is modeled as a
mixture of components and each component is parameterized
by a random draw (θ) from G. Each data observation belongs
to one of the components and is modeled as a function of the
parameter of its component, i.e., fi(θi). Specifically,

G|α,H ∼ DP (α,H) θi|G ∼ G

xi|θi ∼ fi(θi)

Consider drawing N samples of θi (i = 1, 2, . . . , N ) from
G. Because G is a discrete distribution, the probability at
any given point in the probability space can be non-zero.
This implies that the values of the θi’s will repeat with
a positive probability. Hence, these θi’s exhibit clustering
behavior (Polya Urn Scheme). Given the first N samples of
θi from G, we assume they have produced a set of k distinct
values:

Θ∗ = {θ∗1 , θ∗2 , . . . , θ∗k} where k < N .

It can be shown that the next new sample θN+1 can be either
a new value drawn from base distribution H with probability
∝ α or can be taken from one of the existing members from
Θ∗ with probability ∝ ci, where ci is the number of times θ∗i
has been repeated. Specifically,

θN+1|θ1, θ2, . . . , θN ∼ α

α+N
H +

n∑
i=1

ci
α+N

δθi (1)

where δθi denotes the distribution concentrated at a single
point θi. Equation (1) illustrates two important properties of
Dirichlet process. First, the concentration parameter α controls
the number of distinct values of θi’s, i.e., the number of mixing
components. Second, DP exhibits a “rich get richer” property:
the more frequently a θ∗i has been adopted (i.e., the larger the
ci), the more likely it will be chosen again as next θi value.

The learning process of a DP mixture model is to infer
the maximum likelihood of θi assignments for the mixing
components given the observed data. Various techniques such
as MCMC sampling [21] and variational inference [22] have
been developed. We adopt the latter in this study.

V. DIRICHLET MIXTURE OF SPLIT-KERNEL GAUSSIAN
PROCESSES MODEL

In this section, we outline our approach in detail by first
presenting customized Gaussian process with a split kernel (S-
GP) for our motivating domain. We then present the Dirichlet
mixture of S-GP model (S-DPM) and provide the update
equations for posterior inference based on the variational
Bayesian framework.

A. Split-kernel Gaussian Process (S-GP)

Recall that in our motivating domain, physician subjectivi-
ties are reflected in the clinical features that are obtained by
different health professionals whereas the patient biases appear
in the demographic features of the patients. These two types
of bias may not yield to a same form of parametric model.
Hence, the relation (f ) between the entire feature set (X) and
the regression values (Y ) is complex and we resort to non-
parametric Gaussian process (GP) regression. Not only does
GP allow a greater flexibility in the form of f , but also permits
different treatments of the input space X . We take advantage of
this flexibility and apply different kernels to subsets of features
in X to capture their unique characteristics.

Let X ∈ RN×D be the observed inputs and Y ∈ RN the
corresponding regression values, where N is the number of
instances, and D is the number of features. We model our



data as generated by a mixture of components associated with
an infinite set of regression functions {fj}∞j=1. It is convenient
to introduce the latent indicator matrix Z ∈ RN×∞ which ties
the data pairs (xi, yi) with the regression functions fj via the
equation yi = fj(xi) (i.e., Z(i, j) = 1 and each row contains
a single non-zero entry). Each of the regression functions is a
path drawn from a GP:

fi ∼ GP (0,Ki)

We further divide our feature space into

XN×D = (XN×D1

, XN×D2

) where D = D1 ∪D2

For our domain, D1 contains features capturing patient bias
such as age, gender, etc., while D2 contains features reflecting
physician subjectivity (e.g., the interpreted clinical tests). In
what follows we denote X1 = XN×D1

and X2 = XN×D2

.
To account for differences in our treatment of X1 and X2

we impose a special form on the covariance matrix:

K = K1 +K2

where K1(X1, X2) = σ2
1exp[

−(X1
1−X

1
2 )

2

2l21
]

K2(X1, X2) = σ2
2exp[

−(X2
1−X

2
2 )

2

2l22
]

The relative contribution of K1 and K2 is regulated by the
magnitudes of σ1 and σ2. The Gaussian process generating
each regression function fj is then:

fj ∼ GP (0,K1
j +K2

j )

B. Dirichlet Mixture of S-GP Models (S-DPM)

As discussed earlier, we do not have the domain knowledge
to infer the number of distinct clusters in our data. To
circumvent this difficulty, we impose a Dirichlet process as
the prior in our mixture model. Since a GP can be viewed as
a distribution over functions, we let the base distribution H in
our DP to be a zero mean Gaussian process [23]. In our case
we require, however, that H is an S-GP – a Gaussian process
with a “split” kernel.

Following the notations we used in Sections III and IV, our
model can be specified as follows:

G ∼ DP (α,H) f |K1,K2 ∼ G

y|f, x, σ ∼ N(f(x), σ2)

Data generated by the above model are naturally partitioned
(or clustered) by the distinct functions f drawn from H .
Dirichlet process properties imply that the number of clusters
(our mixing components) grows as new data are observed.
The plate diagram in Figure 1 and the data generation process
below describe our model in detail:

1. Draw vk|α ∼ Beta(1, α), k = {1, 2, ...}

2. Draw fk|K1,K2 ∼ H, k = {1, 2, ...}

For the jth data point:

 

Fig. 1. Plate diagram for S-DPM model

(a) Draw zj |{v1, v2, ...} ∼Mult(π(v))

where πk(v) = vk
k−1∏
j=1

(1− vj)

(b) Draw yj |fj , zj , xj , σ ∼ N(fzj (xj), σ
2)

C. Inference

Inference for a DP mixture model is typically conducted us-
ing MCMC [21] or variational approximations [22] because in
most cases the desired posterior distributions are analytically
intractable. The variational approach can be more advanta-
geous due to its scalability and guaranteed local convergence.
Here we use the mean-field variational inference outlined in
[22]. A similar derivation of the posterior approximation and
corresponding update rules via variational inference have been
conducted in [8] and [9]. Here we follow their notation but
replace the single kernel with a combination of two separate
kernels.

As described above, our model employs the latent vari-
ables Z = {z1, z2, . . . } (zi’s are the rows of the indicator
matrix Z mentioned previously), V = {v1, v2, . . . , } and
F = {f1, f2, . . . }. Hyper-parameters are σ (the independent
Gaussian noise) and θ0 = {σ1

0 , σ
2
0 , l

1
0, l

2
0} (the kernel pa-

rameters of H). The inference algorithm iteratively computes
the values of latent variables until convergence. The joint
distribution P (Y, F, Z, V ) can be factored as follows:

p(Y, F, Z, V ) = p(Y |F,Z)p(F )p(Z|V )p(V |α) (2)

where

p(Y |F,Z) =
N∏
n=1

∞∏
k=1

N(yn|fnk , σ2)Zn,k

p(F ) =
∞∏
k=1

N(fk|0,K1
k +K2

k)

p(Z|V ) =
N∏
n=1

∞∏
k=1

(
vk

k−1∏
j=1

(1− vj)

)Zn,k

p(V |α) =
∞∏
k=1

Beta(vk|1, α)



Our goal is to infer the posterior distribution p(F,Z, V |Y ).
In variational inference, the posterior distribution
p(F,Z, V |Y ) is approximated by a computationally
convenient distribution q(F,Z, V ) which minimizes the
Kullback–Leibler (KL) divergence DKL(q||p). Denoting
Ψ = {F,Z, V }, we can write:

DKL(q||p) = −
∑
Ψ

q(Ψ) log p(Ψ|Y )
q(Ψ)

= −
∑
Ψ

q(Ψ) log p(Ψ,Y )
q(Ψ) + log p(Y )

= −L(q) + log p(Y )

The L(q) term in the above equation is often referred to as
the variational free energy. We now have:

DKL(q||p) + L(q) = log p(Y )

Because p(Y ) does not depend on q, maximizing L(q) mini-
mizes the DKL(q||p). In the mean-field approach, maximiza-
tion of L(q) is facilitated by the assumption that the posterior
distribution q factorizes with respect to the latent variables, and
that the factors have the same functional form as the factors
of p. Specifically,

p(Z, V, F |Y ) ≈ q(Z) ∗ q(V ) ∗ q(F )

=

N∏
n=1

qϕn
(zn)

∞∏
k=1

qγk(vk)

∞∏
k=1

qτk(fk)

≈
N∏
n=1

qϕn
(zn)

T−1∏
k=1

qγk(vk)

T∏
k=1

qτk(fk)

(3)

where qγt(vt) are beta distributions, qτt(ft) are S-GPs, and
qϕn

(zn) are multinomial distributions. In the last line of (3)
we truncated the infinite products to contain T factors. Hence
the variational parameters are

ν = {ϕ1, . . . , ϕN , τ1, . . . , τT , γ1, . . . , γT−1}

The truncation is performed on the variational distribution q
only, and could be considered as an additional constraint on
its form. The original model remains unaffected and retains
the infinite number of components. The truncation parameter
T can be adjusted according to to the needs of a particular
application.

Using the calculus of variations that for each of the factors
q(Z), q(V ), q(F ), the optimal distribution q∗ minimizing the
KL divergence is given by:

ln(q∗(ψ|Y )) = E−ψ[ln(p(Ψ, Y ))] + constant

where ψ ∈ Ψ = {Z, V, F}. Hence, from equation (1) we
obtain:

ln(q∗(F )) = EZ,V {ln p(Z, V, F, Y )}
= EZ,V {ln p(F |X)p(Y |F,Z)}+ const

= ln p(F |X) + EZ{ln p(Y |F,Z)}+ const

ln(q∗(Z)) = EF,V {ln p(Z, V, F, Y )}
= EF,V {ln p(Y |F,Z)p(Z|V ))}+ const

= EF {ln p(Y |F,Z)}+ EV {ln p(Z|V )}+ const

ln(q∗(V )) = EF,Z{ln p(Z, V, F, Y )}
= EF,Z{ln p(Z|V )p(V |α))}+ const

= EF,Z{ln p(Z|V )}+ ln p(V |α) + const

The above formulas lead to the following update rules for
each of the variational distributions q:

q∗(F ) =

T∏
k=1

N (fk|µk,Σk)) (4)

where

Σk = (Kk(X,X)−1 +Bk)
−1

Kk(X,X) = K1
k(X,X) +K2

k(X,X)

µk = ΣkBkY

Bk = 1
σ2


EZ{Z}1,k 0 . . . 0

0 EZ{Z}2,k . . . 0
...

...
. . .

...
0 0 . . . EZ{Z}N,k



q∗(V ) =

T∏
k=1

Beta(Vk|1 +
N∑
n=1

EZ{Z}n,k,

α+

T∑
j=k+1

N∑
n=1

EZ{Z}n,j)
(5)

q∗(Z) =

N∏
n=1

T∏
k=1

r
Zn,k

n,k (6)

where
rn,k =

ρn,k
T∑
k=1

ρn,k

ln ρn,k = ln
1√
2πσ2

− 1

2σ2
(Y 2
n − 2YnEF (F

k
n )

+ EF (F
k
n

2
) + EV (lnVT )

+

k−1∑
j=1

EV (ln(1− Vj))

We update (4), (5), (6) iteratively until convergence. The
posterior distribution of {F, V, Z} is given by (3).



Having calculated the latent variables, we can forecast the
regression value y∗ on a new input point x∗ and provide a
measure of uncertainty σ2

y∗ around y∗:

y∗ =
T∑
k=1

(Vt ∗ fk(x∗)) σ2
y∗ =

T∑
k=1

(V 2
k ∗ (σk∗ )2)

VI. EXPERIMENTAL RESULTS

In this section, we first describe the motivating task of
predicting disease course in Multiple Sclerosis patients. We
then present the performance evaluation of the S-DPM model.

A. Predicting Disease Course of Multiple Sclerosis

MS is an autoimmune disease of the central nervous system
in which the immune system attacks the myelin sheath (a
fatty layer of substance protecting the nerves), resulting in
loss/blockage of signals from the brain [24]. Patients suffer
from various levels of disability, and the rate of disability
accumulation varies across patients. The machine learning goal
for this domain is to predict which patients will accumulate
disability and which are likely to remain without disability
accumulation after five years from study entry. The level of
MS disability is measured by the Expanded Disability Status
Scale (EDSS) score [25], [26]. Patients who have a high
likelihood of accumulating disability in five years should be
treated more aggressively and monitored more closely. But,
aggressive treatment carries significant potential side effects,
thus it is critical to be able to make this prediction accurately.
The specific goal of our project is to predict whether the
patients’ EDSS scores will increase by at least two at the
five year mark using information from the first two years of
clinical visits.

Our dataset consists of 574 patients currently enrolled in the
CLIMB study [27], a large-scale, long-term study of patients
with MS. These patients have been monitored for at least five
years and each patient’s data includes demographics (e.g., age
and gender) and extracted MRI scan image data (e.g., lesion
volume and BPF). In addition, patients in the study have a
clinical visit every six months, which includes a complete
neurological exam including a measurement of the subject’s
disability based on the EDSS. The EDSS is calculated by com-
bining information from seven functional system (FS) scales
that measure specific aspects of the patient using separate
ordinal scales that range from 0-6. To demonstrate the potential
subjectivity in scoring of the functional system, one physician
might give a specific patient a score of “1” for his/her joint
mobility whereas another physician would give the patient a
“2”. Increases of the EDSS score by at least 2 from initial visit
to five year mark would classify the patients as the progressive
(“P”) class, otherwise, they would be classified as belonging
to the non-progressive EDSS (“N”) class.

B. Experimental Method

All experiments were conducted by running five indepen-
dent 10-fold cross-validations, and the calculated accuracies
are the averages of the five executions of the program. We

TABLE I
BREAKDOWN OF SUBGROUPS BY INITIAL EDSS SCORES

Initial EDSS score # N # P
Group I < 2 309 61
Group II ≥ 2 and <4 131 28
Group III ≥4 38 7

predict each patient’s EDSS level in five years using the GP
components and then convert the predicted value into the
“P” or “N” class by thresholding at value 2 (as in the class
definition above). In our dataset, the ratio of the total number
of “P” class patients to that of “N” class patients is 96:478.
Because of the imbalance in the two classes of data, we applied
a bagging technique to each training iteration in the cross-
validation, and the final decisions were made according to
the majority votes [28]. Specifically, we formed ten “bags”
of data, each of which contained all minority class (“P” )
instances and an equal number of randomly sampled majority
class (“N”) instances. Ten classifiers were trained using these
balanced “bags” of data and prediction on a new instance
was obtained using a majority vote of the ten classifiers.
Lastly, the hyper-parameters in this study were selected via
grid search. Other methods for learning the hyper-parameters
(e.g., empirical Bayes) could lead to further improvements and
are currently under investigation.

C. Comparison to DPM and Single GP

We compare the S-DPM model’s performance to that of
the standard non-parametric Dirichlet Process Mixture (DPM)
(DPM does not split its kernel). In addition to presenting the
results of that comparison, Figure 2 compares the two mixture
models’ performance to the single Gaussian Process approach.

Our domain experts were interested interested in studying
the patients’ disease progress with respect to their initial
disability level. The motivation for this distinction is that the
baseline characteristics of subjects with different levels of
disability are likely different (i.e., subjects with higher EDSS
scores are likely older, have longer disease duration, and have
been previously been exposed to treatment). In addition, the
potential treatment options will differ for subjects based on
their initial EDSS scores so that the application of the models
in the clinic would be based on the initial EDSS score. To
this extent, we separate our results into three groups I, II,
III depending on their initial EDSS scores’ being less than
2, between 2 and 4, and greater than 4 respectively. Table I
shows the class distribution for each group.

From Figure 2, we observe in the “P” class (left plot) that
the S-DPM model (leftmost bar) outperforms the two other
models for all three groups. For the “N” class (right plot), the
S-DPM (leftmost bar) outperforms the other two models for
Group I and III, but there is no significant difference among
the three models for Group II. The nature of Multiple Sclerosis
makes prediction in class “P” more difficult than in class “N”.
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Fig. 2. Comparison of S-DPM, DPM and GP models applied to each group of data. The y-axis is the classification accuracy. The left graph is for the “P”
class and the right graph is for the “N” class.
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Fig. 3. Comparison of S-DPM applied to each individual group separately (left bars shown in blue) to S-DPM applied to the entire dataset (right bars shown
in red). The y-axis is the classification accuracy. The left graph is for the “P” class and the right graph is for the “N” class.

Consequently, we observe significantly higher accuracies in
predicting the non-progressive patients than the progressive
ones. The difficulty in classifying the “P” patients is potentially
linked to higher physician subjectivities in that class’ data. The
S-DPM model turns out to be more effective in this case; we
observe an average of 12% and 23% gain over the DPM and
GP models respectively. For the “N” class, the average gains
are 8% and 7% respectively.

D. Disease Progression Subgroups versus Entire Dataset

We further conducted an experiment to test whether the DP
based framework can cluster the disease progression subgroups
better than our domain experts. We applied S-DPM to the
entire dataset and calculated the performance achieved for
each individual group under a homogeneous learner. Figure
3 compares the results of training the S-DPM model on the
entire dataset to training one model for each group separately.
The results of each are then shown for each group. We
observe that the results from training each group separately
(leftmost bars) are better than training on the entire dataset
for both the “P” and “N” classes. Therefore, although the DP
based clustering algorithm can in theory induce a grouping
of the data automatically, it is not sufficient to successfully
distinguish the disease progression subgroups in our case. One

explanation is that the predictive features vary across patients
with different level of disability and we designed our kernels
according to the generation of biases in the dataset rather than
the predictive strengths of the features.

VII. CONCLUSION

In this work, we developed a non-parametric mixture model
(S-DPM) to address physician subjectivity and patient bias
in medical data. Our model is a mixture of GP components
that are responsible for the particular biases. In particular,
instead of using a kernel that operates on the entire feature
space, we partition the features into subsets and employ a
separate kernel on each of the subsets in order to capture the
individualized contributions. For MS progression prediction,
we divide the features into two groups: features reflecting
physician subjectivity and patient bias respectively. To have
the data determine the number of mixing components, we
used the Dirchlet process based clustering and estimated its
parameters via variational inference.

One limitation of our approach is the requirement of a pre-
defined partition of the feature space. In our study, there is
an unambiguous division of actual and subjective features.
In practice, not all datasets exhibit such straightforward dis-
tinctive partitions. For future work, we foresee a potential



integration with effective tools to identify subjective attributes
in real-world data to capitalize on the S-DPM approach
presented in this paper.

Lastly, we successfully applied our S-DPM model to predict
the disease course of MS patients. Our experimental results
confirm that the technical labor needed to take advantage
of the split kernel inference is rewarding when the feature
space naturally decomposes into two distinct groups. Our
approach can be extended to applications in which more
than two partitions of feature space are necessary to capture
individualized contributions from these sub-spaces.
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