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– Overview of the course 
– Getting started, “speaking mathematically”  

– variables 
– universal, existential and conditional statements 
– set 
– relations and functions

Outline
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Course Organization

– What is the purpose of lab sections?  
– really problem solving sections, or recitations 
– working on problems (paper and pencils) under the 

guidance of the instructor, sometimes in groups 
– VERY important for your successful mastery of 

concepts/methods/skills taught in lectures. 
– Syllabus 

– Web site: http://storm.cis.fordham.edu/zhang/cs2100 
– Email is the best way to reach me  
– Office hours are open (just stop by)  
– Assessment: academic integrity

http://storm.cis.fordham.edu/zhang/cs2100
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Course Overview

– a more in-depth, rigorous study of following mathematical 
subjects that are important to computer science  
– Logic: 

– arguments, digital logic circuits, 
– quantified statements 

– Proof: how to construct a carefully reasoned argument 
to convince someone that a given statement is true 
– various methods: direct proof, proof by 

contradiction… 
– Mathematical induction: a powerful proof technique 

– Example: can we replace pennies with 3 cent 
coins? 

– Correctness of algorithms: reasoning about loops
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Course Overview (2)

– Recursion: recursively defined sequence and sets, 
recursive function 
– ex: recurrence relation, e.g., Pn=Pn-1+Pn-2 

– Recursive algorithms, e.g., Tower of Hanoi, merge 
sort, …  

– Set theory: go beyond basics, 
– Halting problem (Alan Turing): something that 

computers cannot do… (to be revisited in Theory 
of Computation)  

– Functions:  
– cardinality and computability  
– e.g., Are there more rationals than integers?
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Course Overview (3)

– Relations:  
– modular arithmetic and cryptography 
– PERT and CPM  

– Counting and Probability  
– Monty Hall Problem 
– Bayes’ Theorem, …  

– Analysis of algorithm efficiency  
– e.g., running time of binary search algorithm, 

merge sort algorithm? … 
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Variables
There are two uses of a variable. To illustrate the first use, 
consider asking 
!
Is there a number with the following property: doubling it 
and adding 3 gives the same result as squaring it? 
!
In this sentence you can introduce a variable to replace the 
potentially ambiguous word “it”: 
!
Is there a number x with the property that 2x + 3 = x2?



Variables
The advantage of using a variable is that it allows you to 
give a temporary name to what you are seeking so that you 
can perform concrete computations with it to help discover 
its possible values. 
!
To illustrate the second use of variables, consider the 
statement: 
!
No matter what number might be chosen, if it is greater than 
2, then its square is greater than 4.



Variables
In this case introducing a variable to give a temporary name 
to the (arbitrary) number you might choose enables you to 
maintain the generality of the statement, and replacing all 
instances of the word “it” by the name of the variable 
ensures that possible ambiguity is avoided: 

No matter what number n might be chosen, if n is greater 
than 2, then n2 is greater than 4.



Example 1 – Writing Sentences Using Variables

Use variables to rewrite the following sentences more 
formally. 
 
a. Are there numbers with the property that the sum of their 
    squares equals the square of their sum? 
 
b. Given any real number, its square is nonnegative. 
!
Solution: 
a. Are there numbers a and b with the property that  
    a2 + b2 = (a + b)2?  

    Or : Are there numbers a and b such that a2 + b2 = (a + b)2? 



Example 1 – Solution
    Or : Do there exist any numbers a and b such that  
    a2 + b2 = (a + b)2? 
!
b. Given any real number r, r2 is nonnegative.  
 
    Or : For any real number r, r2 ≥ 0.  
    Or : For all real numbers r, r2 ≥ 0.

cont’d



Some Important Kinds of 
Mathematical Statements



Some Important Kinds of Mathematical Statements

Three of the most important kinds of sentences in 
mathematics are universal statements, conditional 
statements, and existential statements:



Universal Condition Statements 
!
Universal statements contain some variation of the words 
“for all” and conditional statements contain versions of the 
words “if-then.” 

Some Important Kinds of Mathematical Statements



A universal conditional statement is a statement that is 
both universal and conditional. Here is an example: 
!

For all animals a, if a is a dog, then a is a mammal. 
!

One of the most important facts about universal conditional 
statements is that they can be rewritten in ways that make 
them appear to be purely universal or purely conditional.

Some Important Kinds of Mathematical Statements



Example 2 – Rewriting an Universal Conditional Statement

Fill in the blanks to rewrite the following statement: 
For all real numbers x, if x is nonzero then x2 is positive. 
!
a. If a real number is nonzero, then its square _____. 
!
b. For all nonzero real numbers x, ____. 
!
c. If x ____, then ____. 
!
d. The square of any nonzero real number is ____. 
!
e. All nonzero real numbers have ____.



Example 2 – Solution
a. is positive 
!
b. x2 is positive 
!
c. is a nonzero real number; x2 is positive 
!
d. Positive 
!
e. positive squares (or: squares that are positive)



Universal Existential Statements 
!
A universal existential statement is a statement that is 
universal because its first part says that a certain property is 
true for all objects of a given type, and it is existential 
because its second part asserts the existence of something. 
For example: 
!

Every real number has an additive inverse. 
!
In this statement the property “has an additive inverse” 
applies universally to all real numbers.

Some Important Kinds of Mathematical Statements



“Has an additive inverse” asserts the existence of 
something—an additive inverse—for each real number.  
!
However, the nature of the additive inverse depends on the 
real number; different real numbers have different additive 
inverses.

Some Important Kinds of Mathematical Statements



Example 3 – Rewriting an Universal Existential Statement

Fill in the blanks to rewrite the following statement:  
Every pot has a lid. 

a. All pots _____. 

b. For all pots P, there is ____. 
!
c. For all pots P, there is a lid L such that _____. 
!
Solution: 
a. have lids 
!
b. a lid for P 
!
c. L is a lid for P



Existential Universal Statements 
!
An existential universal statement is a statement that is 
existential because its first part asserts that a certain object 
exists and is universal because its second part says that the 
object satisfies a certain property for all things of a certain 
kind. 

Some Important Kinds of Mathematical Statements



For example:  
!
There is a positive integer that is less than or equal to every 
positive integer: 
!
This statement is true because the number one is a positive 
integer, and it satisfies the property of being less than or 
equal to every positive integer.

Some Important Kinds of Mathematical Statements



Example 4 – Rewriting an Existential Universal Statement

Fill in the blanks to rewrite the following statement in three 
different ways: 
!
There is a person in my class who is at least as old as every 
person in my class. 
!
a. Some _____ is at least as old as _____. 
!
b. There is a person p in my class such that p is _____. 
!
c. There is a person p in my class with the property that for 
    every person q in my class, p is _____.



Example 4 – Solution
a. person in my class; every person in my class 
!
b. at least as old as every person in my class 
!
c. at least as old as q



Some of the most important mathematical concepts, such 
as the definition of limit of a sequence, can only be defined 
using phrases that are universal, existential, and 
conditional, and they require the use of all three phrases “for 
all,” “there is,” and “if-then.”

Some Important Kinds of Mathematical Statements



For example, if a1, a2, a3, . . . is a sequence of real numbers, 
saying that 
!

the limit of an as n approaches infinity is L 
!
means that  
!
for all positive real numbers ε, there is an integer N such that 
for all integers n, if n > N then –ε < an – L < ε.

Some Important Kinds of Mathematical Statements
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The Language of Sets
Use of the word set as a formal mathematical term was 
introduced in 1879 by Georg Cantor (1845–1918). For most 
mathematical purposes we can think of a set intuitively, as 
Cantor did, simply as a collection of elements.  
!
For instance, if C is the set of all countries that are currently 
in the United Nations, then the United States is an element 
of C, and if I is the set of all integers from 1 to 100, then the 
number 57 is an element of I.



The Language of Sets
!
!
!
!
!
!
!
!
The axiom of extension says that a set is completely 

determined by what its elements are—not the order in 
which they might be listed or the fact that some elements 
might be listed more than once.



Example 1 – Using the Set-Roster Notation

a. Let A = {1, 2, 3}, B = {3, 1, 2}, and C = {1, 1, 2, 3, 3, 3}.     
What are the elements of A, B, and C? How are A, B, and 
C related? 

b. Is {0} = 0? 
c. How many elements are in the set {1, {1}}? 
d. For each nonnegative integer n, let Un = {n, –n}. Find U1,   

U2, and U0. 
!
Solution: 
a. A, B, and C have exactly the same three elements: 1, 2, 

    and 3. Therefore, A, B, and C are simply different ways  
    to represent the same set.



Example 1 – Solution
b. {0} ≠ 0 because {0} is a set with one element, namely 0,  
    whereas 0 is just the symbol that represents the number  
    zero. 
!
c. The set {1, {1}} has two elements: 1 and the set whose  
    only element is 1. 
!
d. U1 = {1, –1}, U2 = {2, –2}, U0 = {0, –0} = {0, 0} = {0}.

cont’d



The Language of Sets
Certain sets of numbers are so frequently referred to that 
they are given special symbolic names. These are 
summarized in the following table:



The Language of Sets
The set of real numbers is usually pictured as the set of all 
points on a line, as shown below. 
!
!
!
!
The number 0 corresponds to a middle point, called the 
origin. 
!
A unit of distance is marked off, and each point to the right 
of the origin corresponds to a positive real number found by 
computing its distance from the origin.



The Language of Sets
Each point to the left of the origin corresponds to a negative 
real number, which is denoted by computing its distance 
from the origin and putting a minus sign in front of the 
resulting number.  
!
The set of real numbers is therefore divided into three parts: 
the set of positive real numbers, the set of negative real 
numbers, and the number 0.  
!
Note that 0 is neither positive nor negative.



The Language of Sets
Labels are given for a few real numbers corresponding to 
points on the line shown below. 
!
!
!
!
!
The real number line is called continuous because it is 
imagined to have no holes.  
!
The set of integers corresponds to a collection of points 
located at fixed intervals along the real number line.



The Language of Sets
Thus every integer is a real number, and because the 
integers are all separated from each other, the set of 
integers is called discrete. The name discrete mathematics 
comes from the distinction between continuous and discrete 
mathematical objects. 
!
Another way to specify a set uses what is called the       set-
builder notation.



Example 2 – Using the Set-Builder Notation

Given that R denotes the set of all real numbers, Z the set 
of all integers, and Z+ the set of all positive integers, 
describe each of the following sets. 

a. 
!
b. 
!
c.



Example 2 – Solution
a.                                 is the open interval of real numbers 

(strictly) between –2 and 5. It is pictured as follows: 
!
!

!
b.                                 is the set of all integers (strictly) 

between –2 and 5. It is equal to the set  
     {–1, 0, 1, 2, 3, 4}. 
!
c. Since all the integers in Z+ are positive,



Subsets
A basic relation between sets is that of subset.



Subsets
It follows from the definition of subset that for a set A not to 
be a subset of a set B means that there is at least one 
element of A that is not an element of B.  
!
Symbolically:



Example 4 – Distinction between ∈ and ⊆

Which of the following are true statements? 
!
a. 2 ∈ {1, 2, 3}  b. {2} ∈ {1, 2, 3}  c. 2 ⊆ {1, 2, 3} 
d. {2} ⊆ {1, 2, 3}  e. {2} ⊆ {{1}, {2}}  f. {2} ∈ {{1}, {2}} 
!
Solution: 
Only (a), (d), and (f) are true. 
!
For (b) to be true, the set {1, 2, 3} would have to contain the 
element {2}. But the only elements of {1, 2, 3} are 1, 2, and 
3, and 2 is not equal to {2}. Hence (b) is false.



Example 4 – Solution
For (c) to be true, the number 2 would have to be a set and 
every element in the set 2 would have to be an element of 
{1, 2, 3}. This is not the case, so (c) is false. 
!
For (e) to be true, every element in the set containing only 
the number 2 would have to be an element of the set whose 
elements are {1} and {2}. But 2 is not equal to either {1} or 
{2}, and so (e) is false.

cont’d



Cartesian Products



Example 5 – Ordered Pairs
a. Is (1, 2) = (2, 1)? 
!
b. Is                            ? 
!
c. What is the first element of (1, 1)? 
!
Solution: 
a. No. By definition of equality of ordered pairs, 
  (1, 2) = (2,1) if, and only if, 1 = 2 and 2 = 1.                
    But 1 ≠ 2, and so the ordered pairs are not equal.



Example 5 – Solution
b. Yes. By definition of equality of ordered pairs, 
              if, and only if,             and                 
!
 Because these equations are both true, the ordered      
 pairs are equal. 
 
c. In the ordered pair (1, 1), the first and the second  
    elements are both 1.

cont’d



Cartesian Products



Example 6 – Cartesian Products
Let A = {1, 2, 3} and B = {u, v}. 
a. Find A × B 

!
b. Find B × A 
!
c. Find B × B 
!
d. How many elements are in A × B, B × A, and B × B? 
!
e. Let R denote the set of all real numbers. Describe R × R.



Example 6 – Solution
a. A × B = {(1, u), (2, u), (3, u), (1, v), (2, v), (3, v)} 
!
b. B × A = {(u, 1), (u, 2), (u, 3), (v, 1), (v, 2), (v, 3)} 
!
c. B × B = {(u, u), (u, v), (v, u), (v, v)} 
!
d. A × B has six elements. Note that this is the number of  
    elements in A times the number of elements in B.  
!
    B × A has six elements, the number of elements in B    
    times the number of elements in A. B × B has four    
    elements, the number of elements in B times the number  
    of elements in B.



Example 6 – Solution
e. R × R is the set of all ordered pairs (x, y) where both x  
    and y are real numbers.  
!
    If horizontal and vertical axes are drawn on a plane and    
    a unit length is marked off, then each ordered pair in 
    R × R corresponds to a unique point in the plane, with  
    the first and second elements of the pair indicating,  
    respectively, the horizontal and vertical positions of the  
    point.

cont’d



Example 6 – Solution
The term Cartesian plane is often used to refer to a plane 
with this coordinate system, as illustrated in Figure 1.2.1.

cont’d

A Cartesian Plane
Figure 1.2.1
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The Language of Relations and Functions

The objects of mathematics may be related in various ways.  
!
A set A may be said to be related to a set B if A is a subset 
of B, or if A is not a subset of B, or if A and B have at least 
one element in common.  
!
A number x may be said to be related to a number y if  
x < y, or if x is a factor of y, or if x2 + y2 = 1. 
!
Let A = {0, 1, 2} and B = {1, 2, 3} and let us say that an 
element x in A is related to an element y in B if, and only if, 
x is less than y.



The Language of Relations and Functions

Let us use the notation x R y as a shorthand for the 
sentence “x is related to y.” Then 
!
!
!
!
!
On the other hand, if the notation           represents the 
sentence “x is not related to y,” then



The Language of Relations and Functions

The Cartesian product of A and B, A × B, consists of all 
ordered pairs whose first element is in A and whose second 
element is in B: 
!
!
In this case, 
!
!
The elements of some ordered pairs in A × B are related, 
whereas the elements of other ordered pairs are not. 
Consider the set of all ordered pairs in A × B whose 
elements are related



The Language of Relations and Functions

Observe that knowing which ordered pairs lie in this set is 
equivalent to knowing which elements are related to which.  
!
The relation itself can therefore be thought of as the totality 
of ordered pairs whose elements are related by the given 
condition.



The Language of Relations and Functions

The notation for a relation R may be written symbolically as 
follows: 
!

 x R y means that (x, y ) ∈ R. 
!
The notation x    y means that x is not related to y by R: 
!

x    y means that (x, y ) ∉ R.



Example 1 – A Relation as a Subset

Let A = {1, 2} and B = {1, 2, 3} and define a relation R from 
A to B as follows: Given any (x, y) ∈ A × B, 
!
!
!
a. State explicitly which ordered pairs are in A × B and  
    which are in R. 
!
b. Is 1 R 3? Is 2 R 3? Is 2 R 2? 
!
c. What are the domain and co-domain of R?



Example 1 – Solution
a. A × B = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)}. To  
    determine explicitly the composition of R, examine each   
    ordered pair in A × B to see whether its elements satisfy     
    the defining condition for R.



Example 1 – Solution
!
!
Thus 
!
!
b. 
!
!
!
!
c.

cont’d



Arrow Diagram of a Relation



Arrow Diagram of a Relation
Suppose R is a relation from a set A to a set B. The arrow 
diagram for R is obtained as follows: 
!
1.Represent the elements of A as points in one region and 
the elements of B as points in another region. 
!
2.For each x in A and y in B, draw an arrow from x to y if,   
 and only if, x is related to y by R. Symbolically: 
!
   Draw an arrow from x to y 
          if, and only if,    x R y 
          if, and only if,   (x, y) ∈ R.



Example 3 – Arrow Diagrams of Relations

Let A = {1, 2, 3} and B = {1, 3, 5} and define relations S and 
T from A to B as follows:  
For all (x, y ) ∈ A × B, 
!
!
!
!
Draw arrow diagrams for S and T.



Example 3 – Solution
!
!
!
!
!
These example relations illustrate that it is possible to have 
several arrows coming out of the same element of A 
pointing in different directions.  
!
Also, it is quite possible to have an element of A that does 
not have an arrow coming out of it.
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Functions



Functions
Properties (1) and (2) can be stated less formally as follows: 
A relation F from A to B is a function if, and only if: 

1. Every element of A is the first element of an ordered pair  
    of F. 

2. No two distinct ordered pairs in F have the same first  
    element.



Let A = {2, 4, 6} and B = {1, 3, 5}. Which of the relations R, 
S, and T defined below are functions from A to B? 
!
a. R = {(2, 5), (4, 1), (4, 3), (6, 5)} 
!
b. For all (x, y ) ∈ A × B, (x, y ) ∈ S means that y = x + 1. 
!
c. T is defined by the arrow diagram

Example 4 – Functions and Relations on Finite Sets



Example 4(a) – Solution
R is not a function because it does not satisfy property (2). 
The ordered pairs (4, 1) and (4, 3) have the same first 
element but different second elements.  
!
You can see this graphically if you draw the arrow diagram 
for R. There are two arrows coming out of 4: One points to 1 
and the other points to 3.



Example 4(b) – Solution
S is not a function because it does not satisfy property (1). It 
is not true that every element of A is the first element of an 
ordered pair in S.  
!
For example, 6 ∈ A but there is no y in B such that  
y = 6 + 1 = 7. You can also see this graphically by drawing 
the arrow diagram for S.

cont’d



Example 4(c) – Solution
T is a function: Each element in {2, 4, 6} is related to some 
element in {1, 3, 5} and no element in {2, 4, 6} is related to 
more than one element in {1, 3, 5}.  
!
When these properties are stated in terms of the arrow 
diagram, they become (1) there is an arrow coming out of 
each element of the domain, and (2) no element of the 
domain has more than one arrow coming out of it.  
!
So you can write T (2) = 5, T (4) = 1, and T (6) = 1.

cont’d



Function Machines



Another useful way to think of a function is as a machine. 
Suppose f is a function from X to Y and an input x of X is 
given.  
!
Imagine f to be a machine that processes x in a certain way 
to produce the output f (x). This is illustrated in Figure 1.3.1

Function Machines

Figure 1.3.1



Example 6 – Functions Defined by Formulas

The squaring function f from R to R is defined by the 
formula f (x) = x2 for all real numbers x.  
!
This means that no matter what real number input is 
substituted for x, the output of f will be the square of that 
number.  
!
This idea can be represented by writing f (● ) = ● 2. In other 
words, f sends each real number x to x2, or, symbolically,  
f : x → x2. Note that the variable x is a dummy variable; any 
other symbol could replace it, as long as the replacement is 
made everywhere the x appears.



Example 6 – Functions Defined by Formulas

The successor function g from Z to Z is defined by the 
formula g (n) = n + 1. Thus, no matter what integer is 
substituted for n, the output of g will be that number plus 
one: g (● ) = ● + 1.  
!
In other words, g sends each integer n to n + 1, or, 
symbolically, g : n → n + 1. 
!
An example of a constant function is the function h from Q 
to Z defined by the formula h (r) = 2 for all rational numbers 
r. 

cont’d



Example 6 – Functions Defined by Formulas

This function sends each rational number r to 2. In other 
words, no matter what the input, the output is always  
2: h(● ) = 2 or h : r → 2. 
!
The functions f, g, and h are represented by the function 
machines in Figure 1.3.2.

cont’d

Figure 1.3.2



Function Machines
A function is an entity in its own right. It can be thought of as 
a certain relationship between sets or as an input/output 
machine that operates according to a certain rule.  
!
This is the reason why a function is generally denoted by a 
single symbol or string of symbols, such as f, G, of log, or 
sin.   
!
A relation is a subset of a Cartesian product and a function 
is a special kind of relation.



Function Machines
Specifically, if f and g are functions from a set A to a set B, 
then 

f = {(x, y) ∈ A × B | y = f (x)}  
and  

g = {(x, y) ∈ A × B | y = g (x)}. 
!
It follows that 
!
f equals g,   written f = g,    
if, and only if,  f (x) = g (x) for all x in A.



Example 7 – Equality of Functions
Define f : R → R and g: R → R by the following formulas: 
!
!
!
Does f = g? 
!
Solution: 
Yes. Because the absolute value of any real number equals 
the square root of its square,


