Linear Programming CISC5835, Algorithms for Big Data CIS, Fordham Univ.

Instructor: X. Zhang

Example: profit maximization

- · A boutique chocolatier has two products:
 - its flagship assortment of triangular chocolates, called Pyramide,
 - and the more decadent and deluxe Pyramide Nuit.
- · How much of each should it produce to maximize profits?
 - Every box of Pyramide has a a profit of \$1.
 - Every box of Nuit has a profit of \$6.
 - The daily demand is limited to at most 200 boxes of Pyramide and 300 boxes of Nuit.
 - The current workforce can produce a total of at most 400 boxes of chocolate per day.
- Let x₁ be # of boxes of Pyramide, x₂ be # of boxes of Nuit

Linear Programming

- In a linear programming problem, there is a set of variables, and we want to assign real values to them so as to
 - satisfy a set of linear equations and/or linear inequalities involving these variables, and
 - maximize or minimize a given linear objective function.

2

3

Maximize Profit (cont'd)

- All points that lie on line x₁ + 6x₂ = c (for some constant c) achieve same profit c
- As c increases, "profit line" moves parallel to itself, up and to the right.
 - To maximize c: move line as far up as possible, while still touching feasible region.
- Optimum solution: very last feasible point that profit lines sees and must therefore be a vertex of polygon.

A few comments

Simplex Method is a kind of hill climbing technique:

- a mathematical optimization technique which belongs to the family of local search.
- It is an iterative algorithm that starts with an arbitrary solution to a problem, then attempts to find a better solution by incrementally changing a single element of the solution.
- If the change produces a better solution, an incremental change is made to the new solution, repeating until no further improvements can be found.

A few comments

- Linear programming: a special case of convex optimization.
 - Convex optimization: minimizing convex functions over convex sets.
- Simple ex: What if objective function is: maximize x12+x22?

Simplex Algorithm: details

9

11

• Convert the problem into standard form

In *standard form*, we are given *n* real numbers c_1, c_2, \ldots, c_n ; *m* real numbers b_1, b_2, \ldots, b_m ; and *mn* real numbers a_{ij} for $i = 1, 2, \ldots, m$ and $j = 1, 2, \ldots, n$. We wish to find *n* real numbers x_1, x_2, \ldots, x_n that

maximize
$$\sum_{j=1}^{n} c_j x_j$$

subject to
$$\sum_{j=1}^{n} a_{ij} x_j \leq b_i \text{ for } i = 1, 2, \dots, m$$
$$x_j \geq 0 \text{ for } j = 1, 2, \dots, n.$$

Simplex Algorithm: detail

 Convert standard form into slack form $\sum c_j x_j$ maximize subject to $\sum_{j=1}^{m} a_{ij} x_j \leq b_i \quad \text{for } i = 1, 2, \dots, m$ $x_j \ge 0$ for j = 1, 2, ..., n. • slack form: (N, B, A, b, c, v) N: set of non-basic variables (those on the object functions) B: the set of basic variables $z = v + \sum_{j \in N} c_j x_j$ A: matrix (au) (b_i): the vector (ci): the coefficients in object function $x_i = b_i - \sum_{j \in N} a_{ij} x_j$ for $i \in B$, Basic solution: set a Basic solution: set all non-basic variables to 0, and calculate basic variables accordingly. 12

PIVOT(N, B, A, b, c, v, l, e)1 // Compute the coefficients of the equation for new basic variable x_e . 2 let \widehat{A} be a new $m \times n$ matrix 3 $\hat{b}_e = b_l/a_{le}$ 4 for each $j \in N - \{e\}$ $\hat{a}_{ej} = a_{lj}/a_{le}$ 5 6 $\hat{a}_{el} = 1/a_{le}$ 7 // Compute the coefficients of the remaining constraints. 8 for each $i \in B - \{l\}$ $\hat{b}_i = b_i - a_{ie}\hat{b}_e$ 9 for each $j \in N - \{e\}$ 10 $\hat{a}_{ij} = a_{ij} - a_{ie}\hat{a}_{ej}$ 11 12 $\hat{a}_{il} = -a_{ie}\hat{a}_{el}$ 13 // Compute the objective function. 14 $\hat{v} = v + c_e \hat{b}_e$ 15 **for** each $j \in N - \{e\}$ $\hat{c}_i = c_i - c_e \hat{a}_{ei}$ 16 17 $\hat{c}_l = -c_e \hat{a}_{el}$ 18 // Compute new sets of basic and nonbasic variables. 19 $\hat{N} = N - \{e\} \cup \{l\}$ 20 $\hat{B} = B - \{l\} \cup \{e\}$ 21 return $(\hat{N}, \hat{B}, \hat{A}, \hat{b}, \hat{c}, \hat{\nu})$

SIMPLEX(A, b, c)

1	(N, B, A, b, c, v) = INITIALIZE-SIMPLEX (A, b, c)
2	let Δ be a new vector of length n
3	while some index $j \in N$ has $c_i > 0$
4	choose an index $e \in N$ for which $c_e > 0$
5	for each index $i \in B$
6	if $a_{ie} > 0$
7	$\Delta_i = b_i/a_{ie}$
8	else $\Delta_i = \infty$
9	choose an index $l \in B$ that minimizes Δ_i
10	if $\Delta_l == \infty$
11	return "unbounded"
12	else (N, B, A, b, c, v) = PIVOT (N, B, A, b, c, v, l, e)
13	for $i = 1$ to n
14	if $i \in B$
15	$\bar{x}_i = b_i$
16	else $\bar{x}_i = 0$
17	return $(\bar{x}_1, \bar{x}_2, \ldots, \bar{x}_n)$

What if basic solution not feasible? • or the problem is not feasible, or is unbounded? maximize $2x_1 - x_2$ subject to $2x_1 - x_2 \leq 2$ $x_1 - 5x_2 \leq -4$ $x_1, x_2 \geq 0$.

```
INITIALIZE-SIMPLEX (A, b, c)

1 let k be the index of the minimum b_i

2 if b_k \ge 0 // is the initial basic solution feasible?
```

- return ({1, 2, ..., n}, {n + 1, n + 2, ..., n + m}, A, b, c, 0)
 form L_{aux} by adding -x₀ to the left-hand side of each constraint and setting the objective function to -x₀
- 5 let (N, B, A, b, c, v) be the resulting slack form for L_{aux}
- $6 \quad l = n + k$
- 7 // L_{aux} has n + 1 nonbasic variables and m basic variables.
- 8 (N, B, A, b, c, v) = PIVOT(N, B, A, b, c, v, l, 0)
- 9 // The basic solution is now feasible for L_{aux} .
- 10 iterate the **while** loop of lines 3–12 of SIMPLEX until an optimal solution to L_{aux} is found
- 11 **if** the optimal solution to L_{aux} sets \bar{x}_0 to 0
- 12 **if** \bar{x}_0 is basic
- 13 perform one (degenerate) pivot to make it nonbasic
- 14 from the final slack form of L_{aux} , remove x_0 from the constraints and restore the original objective function of L, but replace each basic variable in this objective function by the right-hand side of its associated constraint
- 15 **return** the modified final slack form
- 16 else return "infeasible"

15

Practice

- Consider the following linear program:
 - plot the feasible region and find optimal solution
 - What if objective is to minimize 5x+3y?

maximize 5x + 3y

17

Another Problem

Duckwheat is produced in Kansas and Mexico and consumed in New York and California.

- Kansas produces 15 shnupells of buckwheat and Mexico 8.
- New York consumes 10 shnupells and California 13.
- Transportation costs per shnupell are \$4 from Mexico to New York, \$1 from Mexico to California, \$2 from Kansas to New York, and \$3 and from Kansas to California.
- Write a linear program that decides the amounts of duckwheat (in shnupells and fractions of a shnupell) to be transported from each producer to each consumer, so as to minimize the overall transportation cost.

Transport Networks

- Given a directed graph G=(V,E), two nodes s, t in V (source and sink), and capacities c_e on edges
 - Model some transport system (a network of oil pipelines, computer networks, ...)
 - Question: How to transport as much as goods from s to t using the network using?

19

Max. Flow in Networks

- Input: G=(V,E), edge capacity ce
- Output: fe of each edge (# of var = |E|)
- Linear Programming problem
 - constraints are all linear!
 - maximize: f_(d,t)+f_(e,t)

<section-header><section-header><list-item><list-item> Ford-Fulkerson Alg. Input: G=(V,E), edge capacity ce Output: fe of each edge (# of var = |E|) Ford-Fulkerson Algorithm Following is simple idea of Ford-Fulkerson algorithm: Add this path-flow to flow. Return flow. The transmission of the second to the

Summary

- Linear Programming: assign values to variables subject to linear constraints, with goal of minimizing (or maximizing) a linear function
- · Many problems can be formulated as LP
- if values can only be integer, then it's a harder problem
 - e.g., Knaksack problems
- Ideas of Simplex alg.