Gary M. Weiss's Publications (by Type)

You may also view the publications by: year, area, or top-10 most popular. Click on the title to view the publication in pdf format. The top-10 most popular papers are tagged (in red) with the approximate number of citations and clicking on the tag will bring up the list of citing papers in google scholar.

Journal Articles

  1. Gary M. Weiss (2013). Smartphone Sensor Mining Research: Successes and Lessons, CUR Quarterly, 34(2):17-21.
  2. Jennifer R. Kwapisz, Gary M. Weiss and Samuel A. Moore (2010). Activity Recognition using Cell Phone Accelerometers, ACM SIGKDD Explorations, 12(2):74-82. 178 citations
  3. Gary M. Weiss (2010). The Impact of Small Disjuncts on Classifier Learning. Annals of Information Systems, 8:193-226.
  4. Gary M. Weiss and Ye Tian (2008). Maximizing Classifier Utility when there are Data Acquisition and Modeling Costs. Data Mining and Knowledge Discovery, 17(2): 253-282. (abstract)
  5. Gary M. Weiss and Ye Tian (2006). Maximizing Classifier Utility when Training Data is Costly, ACM SIGKDD Explorations, 8(2):31-38.
  6. Gary M. Weiss (2004). Mining with Rarity: A Unifying Framework, ACM SIGKDD Explorations, 6(1):7-19. 616 citations
  7. Gary M. Weiss and Foster Provost (2003). Learning when Training Data are Costly: The Effect of Class Distribution on Tree Induction, Journal of Artificial Intelligence Research, 19:315-354.  421 citations
  8. Gary. M. Weiss and Johannes P. Ros (1998). Implementing Design Patterns with Object-Oriented Rules, Journal of Object-Oriented Programming, 11(7): 25-35, SIGS Publications Inc, New York.

Books

  1. Damian M. Lyons, Christina Papadakis-Kanaris, Gary M. Weiss, Arthur G. Werschulz (2012). Fundamentals of Discrete Structures 2nd edition, Pearson Learning Solutions. Available at Amazon.

Book Chapters

  1. Gary M. Weiss (2013). Foundations of Imbalanced Learning (preprint). In H. He and Y. Ma (eds.), Imbalanced Learning: Foundations, Algorithms and Applications, Wiley-IEEE Press, 13-41. Preprint posted by permission of publisher. Book available for purchase [Amazon, Wiley].
  2. Gary M. Weiss and Brian Davison (2010). Data Mining. In H. Bidgoli (ed.), Handbook of Technology Management, John Wiley and Sons, Volume 2, 542-555.
  3. Gary M. Weiss (2008). Data Mining in the Telecommunications Industry. In J. Wang (ed.), Encyclopedia of Data Warehousing and Mining, Second Edition, Information Science Publishing, Volume 1, 486-491. Copyright 2008, IGI Global, www.igi-global.com. Posted by permission of the publisher.
  4. Tamraparni Dasu and Gary M. Weiss (2008). Mining Data Streams. In J. Wang (ed.), Encyclopedia of Data Warehousing and Mining, Second Edition, Information Science Publishing, Volume 3, 1248-1256. Copyright 2008, IGI Global, www.igi-global.com. Posted by permission of the publisher.
  5. Gary M. Weiss (2005). Mining with Rare Cases. In O. Maimon and L. Rokach(eds.), Data Mining and Knowledge Discovery Handbook: A Complete Guide for Practitioners and Researchers, Kluwer Academic Publishers, 747-757.
  6. Gary M. Weiss (2005). Data Mining in Telecommunications. In O. Maimon and L. Rokach(eds.), Data Mining and Knowledge Discovery Handbook: A Complete Guide for Practitioners and Researchers, Kluwer Academic Publishers, 1189-1201. 60 citations
  7. Gary M. Weiss (2002). Predicting Telecommunication Equipment Failures from Sequences of Network Alarms. In W. Kloesgen and J. Zytkow (eds.), Handbook of Knowledge Discovery and Data Mining, Oxford University Press, 891-896.
  8. Gary M. Weiss, John Eddy, & Sholom Weiss (1998). Intelligent Telecommunication Technologies, Knowledge-based Intelligent Techniques (chapter 8), L. C. Jain, editor, CRC Press, 249-275.

Edited Works

  1. Robert Stahlbock and Gary M. Weiss, editors, Mahmoud Abou-Nasr, Hamid R. Arabnia, assoc. editors (2013). Proceedings of the 2013 International Conference on Data Mining (DMIN '13), CSREA Press, Las Vegas, NV, July 2013.
  2. Robert Stahlbock and Gary M. Weiss, editors, Mahmoud Abou-Nasr, Hamid R. Arabnia, assoc. editors (2012). Proceedings of the 2012 International Conference on Data Mining (DMIN '12), CSREA Press, Las Vegas, NV, July 2012.
  3. Robert Stahlbock editor, Mahmoud Abou-Nasr, Hamid Arabnia, Nikolas Kourentzes, Philippe Lenca, Wolfram-M. Lippe, Gary M. Weiss assoc. editors (2011). Proceedings of the 2011 International Conference on Data Mining (DMIN '11), CSREA Press, Las Vegas, NV, July 2011. (TOC)
  4. Robert Stahlbock, Sven Crone editors, Mahmoud Abou-Nasr, Hamid Arabnia, Nikolas Kourentzes, Philippe Lenca, Wolfram-M. Lippe, Gary M. Weiss assoc. editors (2010). Proceedings of the 2010 International Conference on Data Mining (DMIN '10), CSREA Press, Las Vegas, NV, July 2010.
  5. Robert Stahlbock, Sven Crone, Stefan Lessmann, editors, Mahmoud Abou-Nasr, Hamid Arabnia, Philippe Lenca, Yanjun Li, Wolfram-M. Lippe, Anthony Scime, Gary M. Weiss assoc. editors (2009). Proceedings of the 2009 International Conference on Data Mining (DMIN '09), CSREA Press, Las Vegas, NV, July 2009.
  6. Gary M. Weiss, Maytal Saar-Tsechansky and Bianca Zadrozny (2008). Special Issue on Utility-Based Data Mining (editors), Data Mining and Knowledge Discovery, 17(2).
  7. Robert Stahlbock, Sven Crone, Stefan Lessmann, editors, Gary Weiss, Hamid Arabnia, Philippe Lenca, Wolfram-M. Lippe, assoc. editors (2008). Proceedings of the 2008 International Conference on Data Mining (DMIN '08), Volumes I & II. CSREA Press, Las Vegas, NV, July 2008.
  8. Bianca Zadrozny, Gary. M. Weiss and Maytal Saar-Tsechansky (2006). Proceedings of the Second International Workshop on Utility-Based Data Mining (editors). ACM Press, Philadelphia, PA, August 2006.
  9. Gary M. Weiss, Maytal Saar-Tsechansky and Bianca Zadrozny (2005). Proceedings of the First International Workshop on Utility-Based Data Mining (editors). ACM Press, Chicago, IL, August 2005.

Conference Papers

  1. Jeffrey W. Lockhart and Gary M. Weiss (2014). The Benefits of Personalized Models for Smartphone-Based Activity Recognition, Proceedings of the 2014 SIAM International Conference on Data Mining, Society for Industrial and Applied Mathematics, Philadelphia, PA, 614-622.
  2. Jennifer R. Kwapisz, Gary M. Weiss and Samuel A. Moore (2010). Cell Phone-Based Biometric Identification, Proceedings of the IEEE Fourth International Conference on Biometrics: Theory, Applications and Systems (BTAS-10), Washington DC.
  3. Jack Chongjie Xue and Gary M. Weiss (2009). Quantification and Semi-Supervised Classification Methods for Handling Changes in Class Distribution, Proceedings of the 15th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD-09), ACM Press, 897-905.
  4. Ye Tian, Gary M. Weiss, D. Frank Hsu and Qiang Ma (2009). A Combinatorial Fusion Method for Feature Construction, Proceedings of the 2009 International Conference on Data Mining, CSREA Press, 260-266.
  5. Gary M. Weiss (2009). Data Mining in the Real World: Experiences, Challenges, and Recommendations, Proceedings of the 2009 International Conference on Data Mining, CSREA Press, 124-130.
  6. Samuel Moore, Daniel D'Addario, James Kurinskas, and Gary M. Weiss (2009). Are Decision Trees Always Greener on the Open (Source) Side of the Fence?, Proceedings of the 2009 International Conference on Data Mining, CSREA Press, 185-188.
  7. Gary M. Weiss, Kate McCarthy and Bibi Zabar (2007). Cost-Sensitive Learning vs. Sampling: Which is Best for Handling Unbalanced Classes with Unequal Error Costs?, Proceedings of the 2007 International Conference on Data Mining, CSREA Press, 35-41.
  8. Gary M. Weiss and Haym Hirsh (2000). A Quantitative Study of Small Disjuncts. Proceedings of the Seventeenth National Conference on Artificial Intelligence (AAAI-2000), AAAI Press, Menlo Park, CA, 665-670. An expanded version is also available.   56 citations
  9. Gary M. Weiss (1999). Timeweaver: a Genetic Algorithm for Identifying Predictive Patterns in Sequences of Events. Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-99), Morgan Kaufmann, San Francisco, CA, 718-725.   55 citations
  10. Gary M. Weiss and Haym Hirsh (1998). Learning to Predict Rare Events in Event Sequences, Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining (KDD-98), AAAI Press, Menlo Park, CA, 359-363.   189 citations
  11. Gary M. Weiss, Johannes P. Ros, Anoop Singhal (1998). ANSWER: Network Monitoring Using Object-Oriented Rules, Proceedings of the Tenth Conference on Innovative Applications of Artificial Intelligence (IAAI-98), AAAI Press, Menlo Park, CA, 1087-1093.
  12. Gary M. Weiss and Haym Hirsh (1998). The Problem with Noise and Small Disjuncts, Proceedings of the Fifteenth International Conference on Machine Learning (ICML-98). Morgan Kaufmann, San Francisco, CA, 574-578.
  13. Dan Dvorak, Anil Mishra, Johannes Ros, Gary M. Weiss & Diane Litman (1996). R++: Using Rules in Object-Oriented Designs, in Addendum Object-Oriented Programming Systems, Languages and Applications (OOPSLA) San Jose, CA.
  14. Gary M. Weiss (1995). Learning with Rare Cases and Small Disjuncts, Proceedings of the Twelfth International Conference on Machine Learning, Lake Tahoe, California, 558-565.   75 citations

Columns, Editorials and Reports

  1. Gary M. Weiss (2013). Your Smartphone Knows You Better Than You Know Yourself. Inside Science, January 4, 2013.
  2. Gary M. Weiss, Bianca Zadrozny, and Maytal Sar-Tsechansky (2008). Guest editorial: special issue on utility-based data mining. Data Mining and Knowledge Discovery, 17(2): 129-135.
  3. Bianca Zadrozny, Gary. M. Weiss and Maytal Saar-Tsechansky (2006). UBDM 2006: Utility-Based Data Mining 2006 Workshop Report. ACM SIGKDD Explorations, 8(2), ACM Press, December 2006.
  4. Gary. M. Weiss, Maytal Saar-Tsechansky and Bianca Zadrozny (2005). Report on UBDM-05: Workshop on Utility-Based Data Mining. ACM SIGKDD Explorations, 7(2):145-147, ACM Press, December 2005.

Workshop Papers

  1. Jeffrey W. Lockhart and Gary M. Weiss (2014). Limitations with Activity Recognition Methodolgy & Data Sets, Proceedings of the 2014 ACM Conference on Ubiquitous Computing Adjunct Publication (2nd International Workshop on Human Activity Sensing Corpus and its Application), Seattle, WA.
  2. Gary M. Weiss, Ashwin Nathan, JB Kropp, and Jeffrey W. Lockhart (2013). WagTag™: A Dog Collar Accessory for Monitoring Canine Activity Levels, Proceedings of the ACM UbiComp International Atelier on Smart Garments and Accessories, ACM Press, Zurich, Switzerland, 405-413.
  3. Gary M. Weiss and Jeffrey W. Lockhart (2012). A Comparison of Alternative Client/Server Architectures for Ubiquitous Mobile Sensor-Based Applications, Proceedings of the ACM UbiComp 1st International Workshop on Ubiquitous Mobile Instrumentation, Pittsburgh, PA.
  4. Jeffrey W. Lockhart, Tony Pulickal, and Gary M. Weiss (2012). Applications of Mobile Activity Recognition, Proceedings of the ACM UbiComp International Workshop on Situation, Activity, and Goal Awareness, Pittsburgh, PA.
  5. Gary M. Weiss and Jeffrey W. Lockhart (2012). The Impact of Personalization on Smartphone-Based Activity Recognition, Papers from the AAAI-12 Workshop on Activity Context Representation: Techniques and Languages, AAAI Technical Report WS-12-05, Toronto, Canada, 98-104.
  6. Gary M. Weiss and Jeffrey W. Lockhart (2011). Identifying User Traits by Mining Smart Phone Accelerometer Data, Proceedings of the Fifth International Workshop on Knowledge Discovery from Sensor Data (at KDD-11), San Diego, CA, 61-69.
  7. Jeffrey W. Lockhart, Gary M. Weiss, Jack C. Xue, Shaun T. Gallagher, Andrew B. Grosner, and Tony T. Pulickal (2011) Design Considerations for the WISDM Smart Phone-Based Sensor Mining Architecture, Proceedings of the Fifth International Workshop on Knowledge Discovery from Sensor Data (at KDD-11), San Diego, CA, 25-33.
  8. Jennifer R. Kwapisz, Gary M. Weiss and Samuel A. Moore (2010). Activity Recognition using Cell Phone Accelerometers, Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD-10), Washington DC, 10-18.
  9. Ye Tian, Gary M. Weiss and Qiang Ma (2007). A Semi-Supervised Approach for Web Spam Detection using Combinatorial Feature-Fusion, Proceedings of the ECML/PKDD 2007 Graph Labelling Workshop and Web Spam Challenge, 16-23.
  10. Ye Tian, Gary M. Weiss, D. Frank Hsu, and Qiang Ma (2007). A Combinatorial Fusion Method for Feature Mining, Proceedings of the First International Workshop on Mining Multiple Information Sources (at KDD-07), ACM Press, 6-13.
  11. Gary. M. Weiss and Ye Tian (2006). Maximizing Classifier Utility when Training Data is Costly, Proceedings of the Second International Workshop on Utility-Based Data Mining (at KDD-06), Philadelphia, PA, ACM Press, 3-11.
  12. Michelle Ciraco, Michael Rogalewski and Gary. M. Weiss (2005). Improving Classifier Utility by Altering the Misclassification Cost Ratio, Proceedings of the First International Workshop on Utility-Based Data Mining (at KDD-05), ACM Press, 46-52.
  13. Kate McCarthy, Bibi Zabar and Gary. M. Weiss (2005). Does Cost-Sensitive Learning Beat Sampling for Classifying Rare Classes?, Proceedings of the First International Workshop on Utility-Based Data Mining (at KDD-05), ACM Press, 69-75. 71 citations
  14. Gary M. Weiss and Haym Hirsh (2000). Learning to Predict Extremely Rare Events. Papers from the AAAI Workshop on Learning from Imbalanced Data Sets, Technical Report WS-00-05, AAAI Press, Menlo Park, CA, 64-68.
  15. Gary M. Weiss (1999). Mining Predictive Patterns in Sequences of Events. Presented at the 1999 AAAI/GECCO Workshop on Data Mining with Evolutionary Algorithms: Research Directions.
  16. Gary M. Weiss and Haym Hirsh (1998). Event Prediction: Learning from Ambiguous Examples. Presented at the 1998 Neural Information Processing Systems (NIPS) Workshop on Learning from Ambiguous and Complex Examples.
  17. Gary M. Weiss and Haym Hirsh (1998). Learning to Predict Rare Events in Categorical Time-Series Data, Papers from the AAAI Workshop on Predicting the Future: AI Approaches to Time-Series Problems, Technical Report WS-98-07, AAAI Press, Menlo Park, CA, 83-90.
  18. Anoop Singhal, Gary M. Weiss and Johannes Ros (1996). A Model Based Reasoning Approach to Network Monitoring, Proceedings of the ACM Workshop of Databases for Active and Real Time Systems (DART) Rockville, Maryland, 41-44.

Ph.D. Disseration

  1. Gary M. Weiss (2003). The Effect of Small Disjuncts and Class Distribution on Decision Tree Learning, Ph.D. Dissertation, Department of Computer Science, Rutgers University, New Brunswick, New Jersey, May 2003. (167 pages, 667 KB).

 
   
top | Home | CIS Dept. | Fordham